Building Streaming Data Analytics Solutions on AWS
- Código del Curso GK7400
- Duración 1 Día
Otros Métodos de Impartición
Salta a:
Método de Impartición
Este curso está disponible en los siguientes formatos:
-
Clase de calendario
Aprendizaje tradicional en el aula
-
Aprendizaje Virtual
Aprendizaje virtual
Solicitar este curso en un formato de entrega diferente.
Temario
Parte superiorCurso Remoto (Abierto)
Nuestra solución de formación remota o virtual, combina tecnologías de alta calidad y la experiencia de nuestros formadores, contenidos, ejercicios e interacción entre compañeros que estén atendiendo la formación, para garantizar una sesión formativa superior, independiente de la ubicación de los alumnos.
Calendario
Parte superior-
- Método de Impartición: Aprendizaje Virtual
- Fecha: 08 septiembre, 2025
- Sede: Aula Virtual
- Idioma: Inglés
Dirigido a
Parte superiorThis course is intended for:
Data engineers and architects
Developers who want to build and manage real-time applications and streaming data analytics solutions
Objetivos del Curso
Parte superiorIn this course, you will learn to:
- Understand the features and benefits of a modern data architecture. Learn how AWS streaming services fit into a modern data architecture.
- Design and implement a streaming data analytics solution • Identify and apply appropriate techniques, such as compression, sharding, and partitioning, to optimize data storage
- Select and deploy appropriate options to ingest, transform, and store real-time and near real-time data
- Choose the appropriate streams, clusters, topics, scaling approach, and network topology for a particular business use case
- Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
- Secure streaming data at rest and in transit
- Monitor analytics workloads to identify and remediate problems
- Apply cost management best practices
Contenido
Parte superiorModule A: Overview of Data Analytics and the Data Pipeline
- Data analytics use cases
- Using the data pipeline for analytics
Module 1: Using Streaming Services in the Data Analytics Pipeline
- The importance of streaming data analytics
- The streaming data analytics pipeline
- Streaming concepts
Module 2: Introduction to AWS Streaming Services
- Streaming data services in AWS
- Amazon Kinesis in analytics solutions
- Demonstration: Explore Amazon Kinesis Data Streams
- Practice Lab: Setting up a streaming delivery pipeline with Amazon Kinesis
- Using Amazon Kinesis Data Analytics
- Introduction to Amazon MSK
- Overview of Spark Streaming
Module 3: Using Amazon Kinesis for Real-time Data Analytics
- Exploring Amazon Kinesis using a clickstream workload
- Creating Kinesis data and delivery streams
- Demonstration: Understanding producers and consumers
- Building stream producers
- Building stream consumers
- Building and deploying Flink applications in Kinesis Data Analytics
- Demonstration: Explore Zeppelin notebooks for Kinesis Data Analytics
- Practice Lab: Streaming analytics with Amazon Kinesis Data Analytics and Apache Flink
Module 4: Securing, Monitoring, and Optimizing Amazon Kinesis
- Optimize Amazon Kinesis to gain actionable business insights
- Security and monitoring best practices
Module 5: Using Amazon MSK in Streaming Data Analytics Solutions
- Use cases for Amazon MSK
- Creating MSK clusters
- Demonstration: Provisioning an MSK Cluster
- Ingesting data into Amazon MSK
- Practice Lab: Introduction to access control with Amazon MSK
- Transforming and processing in Amazon MSK
Module 6: Securing, Monitoring, and Optimizing Amazon MSK
- Optimizing Amazon MSK
- Demonstration: Scaling up Amazon MSK storage
- Practice Lab: Amazon MSK streaming pipeline and application deployment
- Security and monitoring
- Demonstration: Monitoring an MSK cluster
Module 7: Designing Streaming Data Analytics Solutions
- Use case review
- Class Exercise: Designing a streaming data analytics workflow
Module B: Developing Modern Data Architectures on AWS
- Modern data architectures
Pre-requisitos
Parte superior- At least one year of data analytics experience or direct experience building real-time applications or streaming analytics solutions.
- We suggest the Streaming Data Solutions on AWS whitepaper for those that need a refresher on streaming concepts.
Certificación de Prueba
Parte superiorThis class is focused on hands on training but will put you in position to for the AWS CERTIFIED DATA ANALYTICS – SPECIALTY.
- AWS Certified Database - Specialty
- #000000