Skip to main Content

Building Data Analytics Solutions Using Amazon Redshift

  • Code training GK7379
  • Duur 1 dag

Klassikale training Prijs

eur795.00

(excl. BTW)

Vraag een groepstraining aan Schrijf je in

Methode

Deze training is in de volgende formats beschikbaar:

  • Class Connect

    Verbind naar een klas in HD

  • Klassikale training

    Klassikaal leren

  • Op locatie klant

    Op locatie klant

  • Virtueel leren

    Virtueel leren

Vraag deze training aan in een andere lesvorm.

Trainingsbeschrijving

Naar boven

In this course, you will build a data analytics solution using Amazon Redshift, a cloud data warehouse service. The course focuses on the data collection, ingestion, cataloging, storage, and processing components of the analytics pipeline. You will learn to integrate Amazon Redshift with a data lake to support both analytics and machine learning workloads. You will also learn to apply security, performance, and cost management best practices to the operation of Amazon Redshift.

    • Methode: Virtueel leren
    • Datum: 27 juni, 2025
    • Locatie: Virtueel-en-klassikaal

    eur795.00

    • Methode: Virtueel leren
    • Datum: 07 juli, 2025
    • Locatie: Virtueel-en-klassikaal
    • Taal: Engels

    eur795.00

    • Methode: Virtueel leren
    • Datum: 28 augustus, 2025
    • Locatie: Virtueel-en-klassikaal
    • Taal: Engels

    eur795.00

    • Methode: Virtueel leren
    • Datum: 26 september, 2025
    • Locatie: Virtueel-en-klassikaal

    eur795.00

    • Methode: Virtueel leren
    • Datum: 24 oktober, 2025
    • Locatie: Virtueel-en-klassikaal
    • Taal: Engels

    eur795.00

    • Methode: Virtueel leren
    • Datum: 21 november, 2025
    • Locatie: Virtueel-en-klassikaal
    • Taal: Engels

    eur795.00

Doelgroep

Naar boven

This course is intended for data warehouse engineers, data platform engineers, and architects and operators who build and manage data analytics pipelines.

Trainingsdoelstellingen

Naar boven

In this course, you will learn to:

  • Compare the features and benefits of data warehouses, data lakes, and modern data architectures
  • Design and implement a data warehouse analytics solution
  • Identify and apply appropriate techniques, including compression, to optimize data storage
  • Select and deploy appropriate options to ingest, transform, and store data
  • Choose the appropriate instance and node types, clusters, auto scaling, and network topology for a particular business use case
  • Understand how data storage and processing affect the analysis and visualization mechanisms needed to gain actionable business insights
  • Secure data at rest and in transit
  • Monitor analytics workloads to identify and remediate problems
  • Apply cost management best practices

Inhoud training

Naar boven

Module A: Overview of Data Analytics and the Data Pipeline

  • Data analytics use cases
  • Using the data pipeline for analytics

Module 1: Using Amazon Redshift in the Data Analytics Pipeline

  • Why Amazon Redshift for data warehousing?
  • Overview of Amazon Redshift

Module 2: Introduction to Amazon Redshift

  • Amazon Redshift architecture
  • Interactive Demo 1: Touring the Amazon Redshift console
  • Amazon Redshift features
  • Practice Lab 1: Load and query data in an Amazon Redshift cluster

Module 3: Ingestion and Storage

  • Ingestion
  • Interactive Demo 2: Connecting your Amazon Redshift cluster using a Jupyter notebook with Data API
  • Data distribution and storage
  • Interactive Demo 3: Analyzing semi-structured data using the SUPER data type
  • Querying data in Amazon Redshift
  • Practice Lab 2: Data analytics using Amazon Redshift Spectrum

Module 4: Processing and Optimizing Data

  • Data transformation
  • Advanced querying
  • Practice Lab 3: Data transformation and querying in Amazon Redshift
  • Resource management
  • Interactive Demo 4: Applying mixed workload management on Amazon Redshift
  • Automation and optimization
  • Interactive demo 5: Amazon Redshift cluster resizing from the dc2.large to ra3.xlplus cluster

Module 5: Security and Monitoring of Amazon Redshift Clusters

  • Securing the Amazon Redshift cluster
  • Monitoring and troubleshooting Amazon Redshift clusters

Module 6: Designing Data Warehouse Analytics Solutions

  • Data warehouse use case review
  • Activity: Designing a data warehouse analytics workflow

Module B: Developing Modern Data Architectures on AWS

  • Modern data architectures

Voorkennis

Naar boven

Students with a minimum one-year experience managing data warehouses will benefit from this course.

We recommend that attendees of this course have:

  • Completed either AWS Technical Essentials or Architecting on AWS
  • Completed Building Data Lakes on AWS
Cookie Control toggle icon